C++ Programming:
From Problem Analysis
to Program Design, Fourth Edition

Chapter 6: User-Defined Functions |

Objectives

In this chapter, you will:

Learn about standard (predefined) functions
and discover how to use them in a program

Learn about user-defined functions

Examine value-returning functions, including
actual and formal parameters

Explore how to construct and use a value-
returning, user-defined function in a program

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Introduction

* Functions are like building blocks

* They allow complicated programs to be
divided into manageable pieces
e Some advantages of functions:

— A programmer can focus on just that part of
the program and construct it, debug it, and
perfect it

— Different people can work on different
functions simultaneously

— Can be re-used (even in different programs)
— Enhance program readabillity

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Introduction (continued)

* Functions
— Called modules
— Like miniature programs
— Can be put together to form a larger program

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Predefined Functions

 In algebra, a function is defined as a rule or
correspondence between values, called the
function’s arguments, and the unique value of
the function associated with the arguments

-Iff(x) = 2x + 5,thenf (1) = 7,
f(2) = 9,and £(3) = 11

« 1, 2, and 3 are arguments

« 7, 9,and 11 are the corresponding values

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Predefined Functions (continued)

« Some of the predefined mathematical functions
are:

sgrt (x)
POwW (X, V)

floor (x)

« Predefined functions are organized into
separate libraries

e |/O functions are In iostream header
« Math functions are iIn cmath header

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 6

Predefined Functions (continued)

* pow (x,v) calculates xv
—pow (2, 3) = 8.0
— Returns a value of type double

- x and y are the parameters (or arguments)
» The function has two parameters

 sqrt (x) calculates the nonnegative square
root of x, for x >= 0.0

—- sqrt(2.25)is1.5
— Type double

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Predefined Functions (continued)

 The floor function floor (x) calculates
largest whole number not greater than x

— floor(48.79) 1S 48.0
— Type double
— Has only one parameter

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Predefined Functions (continued)

TABLE 6-1 Predefined Functions

. Returns the absolute value . .
abs (x) <cstdlib> of its argument: abs (=7) =7 int int

Returns the smallest whole
ceil (x) <cmath> number that is not less than double double
x: ceil (56.34) = 57.0

Returns the cosine of angle double
cos (x) <cmath> x: cos(0.0) = 1.0 (radians) double
S50 - Returns e®, wheree =2 .,718: double double

exp(l1.0) = 2.71828

Returns the absolute value
fabs (x) <cmath> of its argument: double double
fabs (-5.67) =5.67

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Predefined Functions (continued)

TABLE 6-1 Predefined Functions (continued)

Returns the largest whole
floor(x) <cmath> number that is not greater than
x:floor(45.67) =45.00

Returns x¥; If x is negative, y
pow (%, V) <cmath> must be a whole number:
pow(0.16, 0.5)=0.4

Returns the lowercase value

tolower (x) <cctype> of x If x Is uppercase;
otherwise, returns x

Returns the uppercase value
toupper (x) <cctype> of x if x is lowercase;
otherwise, returns x

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

double

double

int

int

double

double

int

int

10

//How to use predefined functions.

#include <jiostream>
#include <cmath>
##include <cctype>
#include <cstdlib>

using namespace std;

int main()

{

int ®;
double u, v;

cout << "Line 1l: Uppercase a is "
<< static_cast<char> (toupper('a'))

<< endl;

u = 4,2;

v = 3.0;

cout << "Line 4: " << u << " to the power of "
<< v << " =" << pow(u, v) << endl;

cout << "Line 5: 5.0 to the power of 4 = "
<< pow(5.0, 4) << endl;

u=u+pow(3.0, 3);

cout << "Line 7: u = " << u << endl;

x = =-15;

cout << "Line 9: Absolute value of " << x
<< " =" << abs(x) << endl;

return 0;

/ /Line

/ /Line
J/ /Line

//Line

//Line

//Line
//Line

//Line

//Line

Predefined Functions (continued)

« Example 6-1 sample run:

Line 1: Uppercase a is A

Line 4: 4.2 to the power of 3 = 74.088
Line 5: 5.0 to the power of 4 = 625
Line 7: u = 31.2

Line 9: Absolute value of -15 = 15

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

User-Defined Functions

« Value-returning functions: have a return type

— Return a value of a specific data type using
the return statement

* Void functions: do not have a return type

— Do notuse a return statement to return a
value

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

13

Value-Returning Functions

* To use these functions you must:

- Include the appropriate header file in your
program using the include statement

— Know the following items:
« Name of the function
 Number of parameters, if any
« Data type of each parameter

« Data type of the value returned: called the type
of the function

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 14

Value-Returning Functions
(continued)

« Because the value returned by a value-
returning function Is unique, we must:

— Save the value for further calculation
— Use the value in some calculation
- Print the value

* A value-returning function is used in an
assignment or in an output statement

* One more thing Is associated with functions:

— The code required to accomplish the task

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

15

Value-Returning Functions
(continued)

int abs(int number)

int abs(int number)

{
if (number < 0)
number = -number;

return number;
}

double pow(double base, double exponent)

double u = 2.5;
double v = 3,0;
double x, y, w;
x = pow(u, v); //Line 1
y = pow(2.0, 3.2); //Line 2
w = pow(u, 7); //Line 3

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

16

Value-Returning Functions
(continued)

« Heading: first four properties above

— Example: int abs (int number)

 Formal Parameter: variable declared in the
heading

- Example: number

« Actual Parameter: variable or expression
listed in a call to a function

- Example: x = pow (u, v)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 17

Syntax: Value-Returning Function

¢ Syntax:

functionType functionName (formal parameter list)

{
statements

}

« functionType IS also called the data type
or return type

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

18

Syntax: Formal Parameter List

dataType identifier, dataType identifier, ...

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

19

Function Call

functionName (actual parameter list)

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

20

Syntax: Actual Parameter List

* The syntax of the actual parameter list is:

expression or variable, expression or variable, ...

* Formal parameter list can be empty:
functionType functionName ()

A call to a value-returning function with an
empty formal parameter list is:

functionName ()

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

21

return Statement

* Once a value-returning function computes the

value, the function returns this value via the
return statement

— It passes this value outside the function via the
return statement

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 22

Syntax: return Statement

The return statement has the following
syntax:

return expr;

In C++, return IS a reserved word

When a return statement executes
— Function immediately terminates
— Control goes back to the caller

When a return statement executes in the
function main, the program terminates

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 23

double larger (double x, double y)

{
double max;
if (x >= vy)
max = xX;
else
max = y;
return max;
}
You can also write this function as follows:
double larger (double x, double y) double larger (double x, double y)
{ {
if (x >=y) if (x >=y)
return x; return x;
else
return y; return y;
} }
NOTE 1. Inthe definition of the function larger, x and y are formal parameters.

2. The return statement can appear anywhere in the function. Recall that once a
return statement executes, all subsequent statements are skipped. Thus, it's
a good idea to return the value as soon as it is computed.

Function Prototype

« Function prototype: function heading without the body
of the function

e Syntax:

functionType functionName (parameter list):;

 Itis not necessary to specify the variable name in the
parameter list

« The data type of each parameter must be specified

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 25

//Program: Largest of three numbers
#include <iostream>
using namespace std;

double larger (double x, double y);
double compareThree (double x, double y, double z);

int main ()
{
double one, two; //Line

cout << "Line 2: The larger of 5 and 10 is "

<< larger (5, 10) << endl; //Line
cout << "Line 3: Enter two numbers: "; //Line
cin >> one >> two; //Line
cout << endl; J/Line

cout << "Line 6: The larger of " << one
<< " and " << two << " is "
<< larger(one, two) << endl; //Line

cout << "Line 7: The largest of 23, 34, and "
<< "12 is " << compareThree (23, 34, 12)
<< endl; //Line

return 0;

o W

Function Prototype (continued)

double larger (double x, double y)
{
if (x >= y)
return x;
else
return y;

}

double compareThree (double x, double y, double z)

{
return larger(x, larger(y, z)):

}

Sample Run: In this sample run, the user input is shaded.

Line 2: The larger of 5 and 10 is 10
Line 3: Enter two numbers: 25 73

Line 6: The larger of 25 and 73 is 73
Line 7: The largest of 23, 34, and 12 is 34

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

Palindrome Number

* A nonnegative integer is a palindrome if it
reads forward and backward in the same way

- Examples: 5, 44, 789656987

bool isNumPalindrome (int num)
{

int pwr = 0;

if (num < 10) //Step 1
return true;
else //Step 2
{
//Step 2.a
while (num / static cast<int> (pow(10.0, pwr)) >= 10)
pPwr++;

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 28

Palindrome Number (continued)

while (num >= 10) //Step 2.b
{
int tenTopwr = static cast<int>(pow(10.0, pwr));
if ((num / tenTopwr) != (num % 10))
return false; //Step 2.b.
else //Step 2.b.
{
num = num % tenTopwr; //Step 2.b.
num = num / 10; //Step 2.b.
pwr = pwr - 2; //Step 2.b.

}
}//end while

return true;
}//end else

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

S I]

[I L

(SRS

29

Flow of Execution

« Execution always begins at the first statement
In the function main

» Other functions are executed only when they
are callec

« Function prototypes appear before any
function definition

— The compiler translates these first

« The compiler can then correctly translate a
function call

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 30

Flow of Execution (continued)

* A function call results in transfer of control to
the first statement in the body of the called
function

« After the last statement of a function Is
executed, control is passed back to the point
iImmediately following the function call

* A value-returning function returns a value

— After executing the function the returned value
replaces the function call statement

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 31

Programming Example: Largest
Number

 The function 1larger is used to determine the
largest number from a set of numbers

* Program determines the largest number from
a set of 10 numbers

* |nput: a set of 10 numbers
« Qutput: the largest of 10 numbers

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 32

Programming Example: Program
Analysis

e Suppose that the input data Is:
15 20 7 8 28 21 43 12 35 3

« Read the first number of the data set

— Because this is the only number read to this

point, you may assume that it is the largest
number so far and call it max

e Read the second number and call it num

— Compare max and num, and store the larger
number into max

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

33

Programming Example: Program
Analysis (continued)

 Now max contains the larger of the first two
numbers

* Read the third number and compare it with
max and store the larger number Iinto max

— max contains the largest of the first three
numbers

« Read the next number, compare it with max,
and store the larger into max

« Repeat this process for each remaining
number In the data set

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

34

Programming Example: Algorithm
Design

« Read the first number

— Because this is the only number that you have
read, it is the largest number so far

— Save it in a variable called max
* For each remaining number In the list

- Read the next number
— Store it In a variable called num

— Compare num and max

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 35

Programming Example: Algorithm
Design (continued)

* For each remaining number in the list
(continued)

- Ifmax < num
« num IS the new largest number
 update the value of max by copying num into max

- If max >= num, discard num; that is, do
nothing

* Because max now contains the largest
number, print it

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 36

Summary

Functions (modules) are miniature programs
— Divide a program into manageable tasks
C++ provides the standard functions

Two types of user-defined functions: value-
returning functions and void functions

Variables defined in a function heading are
called formal parameters

Expressions, variables, or constant values in
a function call are called actual parameters

C++ Programming: From Problem Analysis to Program Design, Fourth Edition

37

Summary (continued)

 In a function call, the number of actual
parameters and their types must match with

t

t

 Function
are calleo

ne forma

ne actua

| parameters in the order given

"0 call a function, use Iits name together with

parameter list
neading and the body of the function

the definition of the function

 |f a function has no parameters, you need
empty parentheses in heading and call

A value-returning function returns its value via
the return statement

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 38

Summary (continued)

A prototype is the function heading without
the body of the function; prototypes end with
the semicolon

Prototypes are placed before every function
definition, including main

User-defined functions execute only when
they are called

In a call statement, specify only the actual
parameters, not their data types

C++ Programming: From Problem Analysis to Program Design, Fourth Edition 39

